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SEPARATION SCIENCE AND TECHNOLOGY, 1 6 ( 9 ) ,  pp. 1113-1126, 1981 

Studies of the Synergistic Effect 

G.  R. CHOPPIN 
DEPARTMENT OF CHEMISTRY 
FLORIDA STATE UNIVERSITY 
TALLAHASSEE. FLORIDA 32306 

ABSTRACT 

Two a s p e c t s  of synergism i n  s o l v e n t  e x t r a c t i o n  are reviewed 

Temperature dependence s t u d i e s  a l low calculxi t ion of t h e  en- 
dependence on temperature  and on t h e  organic  s o l v e n t .  

t h a l p y  and en t ropy  changes a s s o c i a t e d  with t h e  s y n e r g i s t i c  r e a c t i o n  
which i s  def ined  as :  

where M = m e t a l  c a t i o n ,  X = primary e x t r a c t a n t ,  S = secondary ex- 
t r a c t a n t .  From t h e  magnitude and s i g n s  of t h e  AS v a l u e s ,  i t  i s  
o f t e n  p o s s i b l e  t o  dec ide  whether synergism i s  a s s o c i a t e d  w i t h  
replacement of  s o l v a t e  water by adduct molecules with no change 
i n  coord ina t ion  number. Examples of e x t r a c t i o n  of a number 
of metals of d i f f e r e n t  o x i d a t i o n  states are d iscussed  t o  i n d i c a t e  
t h e  r e s p e c t i v e  r o l e s  of dehydrat ion and coord ina t ion  number change 
i n  synergism. 

Complexing organic  l i g a n d s  o f t e n  show a s y n e r g i s t i c  e f f e c t .  
A s t u d y  of t h e  system Eu(I11) - benzoic  a c i d  - TTA in d i f f e r e n t  
s o l v e n t s  i s  discussed t o  i n d i c a t e  t h e  r o l e s  of  water and l i g a n d  
s o l u b i l i t y  i n  t h e  organic  s o l v e n t .  
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INTRODUCTION 

CHOPPIN 

The term synergism when a p p l i e d  t o  s o l v e n t  e x t r a c t i o n  de- 

s c r i b e s  t h e  e f f e c t  whereby e x t r a c t i o n  from an aqueous t o  a n  o r g a n i c  

phase of c e r t a i n  metal  s p e c i e s  i s  g r e a t e r  when two e x t r a c t i n g  

agents  a r e  p r e s e n t  t h a n  t h e  sum of  t h e  e x t r a c t i o n  by e i t h e r  of  t h e  

e x t r a c t a n t s  a l o n e  r1,21.  The s imples t  and most s t u d i e d  of  t h e  

s y n e r g i s t i c  e x t r a c t i o n  systems i n v o l v e s  an a c i d i c  c h e l a t i n g  l i g a n d  

and a n e u t r a l  adduct .  

phorous compound (such as  t r i b u t y l p h o s p h a t e ,  TBP) o r  a p y r i d i n e  

der iva t ive  whi le  thenoyltriflouroacetone, HTTA, and s imi l a r  B-dike- 

tones are f r e q u e n t l y  used as t h e  c h e l a t i n g  l i g a n d .  

The l a t t e r  most o f t e n  has  been a n  organo- 

A second c l a s s  of s y n e r g i s t i c  e x t r a c t i o n  systems i n v o l v e s  

a lkylphosphor ic ,  c a r b o x y l i c  o r  s u l f o n i c  a c i d s  r a t h e r  than c h e l a n t s  

as t h e  a c i d i c  component of t h e  system. T h i s  c l a s s  of s y n e r g i s t i c  

e x t r a c t i o n  systems shows much s m a l l e r  s y n e r g i s t i c  e f f e c t s  and 

e x h i b i t s  synergism w i t h  fewer m e t a l  s p e c i e s .  

The pr imary cause f o r  synergism is  accepted  g e n e r a l l y  as an 

i n c r e a s e  i n  hydrophobic c h a r a c t e r  of  t h e  e x t r a c t e d  metal complex 

upon a d d i t i o n  of  t h e  adduct .  Three mechanisms have been proposed 

t o  e x p l a i n  t h e  synergism f o r  c h e l a n t  - adduct .  The f i r s t  of 

t h e s e  involves  an opening of  one o r  more of t h e  c h e l a t e  r i n g s  and 

occupat ion by t h e  adduct  molecule(s )  of t h e  vaca ted  meta l  coor- 

d i n a t i o n  s i t e s ( s ) .  In  t h e  second mechanism, t h e  c h e l a t e  r i n g s  

do not  c o o r d i n a t e l y  s a t u r a t e  t h e  metal  i o n  and t h e  r e s i d u a l  w a t e r ( s )  

occupying t h e  remaining c o o r d i n a t i o n  s i tes  a r e  r e p l a c e d  by adduct 

molecules. The t h i r d  mechanism i n v o l v e s  an expansion o f  t h e  coor- 

d i n a t i o n  sphere  upon a d d i t i o n  of  adduct  molecules  b u t  no rep lace-  

ment of waters .  From t h e  e x t r a c t i o n  c o n s t a n t s ,  i t  i s  r a r e l y  

p o s s i b l e  t o  choose between t h e s e  a l t e r n a t i v e  mechanisms b u t  

en tha lpy  and en t ropy  d a t a  of  t h e  s y n e r g i s t i c  r e a c t i o n s  have been 

used t o  provide  more d e f i n i t i v e  arguments. Unfor tuna te ly ,  t h e s e  

more complete thermodynamic s t u d i e s  a r e  not  numerous. Moreover, 

t h e  en tha lpy  and en t ropy  v a l u e s  are c a l c u l a t e d  i n  a l l  bu t  a few 

c a s e s  by measurements of t h e  tempera ture  v a r i a t i o n  of t h e  e x t r a c t i o n  
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SYNERGISTIC EFFECT 1115 

c o n s t a n t  r a t h e r  t h a n  d i r e c t l y  by ca lor imet ry .  

c o e f f i c i e n t  measurements are  more open t o  ques t ion .  

Such temperature  

DISCUSSION 

I. HTTA + TBP Systems 

To s t u d y  t h e  a p p l i c a b i l i t y  of t h e  v a r i o u s  mechanisms, l e t  us 

review measurements of  t h e  thermodynamics of e x t r a c t i o n  of C a ( I I ) ,  

Z n ( I I ) ,  U02+2, L n ( I I I ) ,  A n ( I I I ) ,  and An(IV) c a t i o n s  (Ln=lanthanide 

and An=act inide)  by HTTA + TBP. The o v e r a l l  e x t r a c t i o n  r e a c t i o n  

i s  w r i t t e n  as: 

(1) 
+ nHTTA + mTBP = M(TTA)n(TBP)m(o) + nH + 

(0) ( 0 )  (aq)  
Mn+ 

(aq)  

Using t h e  e x t r a c t i o n  equat ion  f o r  TTA a l o n e  - i . e . ,  

+ 
(aq) + nHTTA = M(TTA)n(o) + nH 

( 0 )  (aq)  
M"+ 

we o b t a i n  t h e  " s y n e r g i s t i c  reac t ion" :  

M (TT.4) ( ) + mTBP (0) = M(TTA)n(TBP)m(o) ( 3 )  

Thermodynamic d a t a  f o r  t h e  e x t r a c t i o n  r e a c t i o n s  (1) and ( 2 )  a l low 

c a l c u l a t i o n  of t h e  corresponding v a l u e s  f o r  ( 3 ) .  

These equat ions  do n o t  provide  complete d e f i n i t i o n  of  t h e  

r e a c t i o n s  which may b e  of  s i g n i f i c a n c e  i n  any system. 

HTTA can e x i s t  as a k e t o ,  an enol  and a keto-hydrate  s p e c i e s .  

The metal  combines w i t h  t h e  enol  form which u s u a l l y  i s  t h e  domi- 

nant  one i n  "organic"  s o l v e n t s  (e.g. K=[HTTAIe/[HTTAlk - 6 i n  

w e t  benzene). 

f a s t  a l though they  seem t o  b e  c a t a l y z e d  by t h e  presence  of an 

adduct  such as TBP o r  TOP0 ( 3 ) .  Such adducts  r e a c t  w i t h  t h e  

enol  form i n  d r i e r  s o l v e n t s  bu t  cannot  compete w i t h  water i n  

wetter ones.  

i n  s y n e r g i s t i c  systems.  Healy ( 4 )  measured t h e  e x t e n t  of such 

hydra t ion  and r e p o r t e d  t h e  fo l lowing  water c o n c e n t r a t i o n s  i n  hexane: 

For example, 

The k i n e t i c s  o f  t h e  k e t o  2 enol  r e a c t i o n  are n o t  

Thus HTTAsTBP and TBP*H 0 s p e c i e s  are a l s o  p r e s e n t  2 

pure hexane: 0.004 M 
0.05 M TBP: 0.006 M 
0.20 M HTTA: 0.016 M 
0.20 M HTTA + 0.05 M TBP: 0.021 M 
0.05 M Th + 0.20 M HTTA + 0.05 M TBP: 0.003 M 
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1116 CHOPPIN 

I r v i n g  (1) h a s  d i s c u s s e d  i n  terms of t h e s e  compl ica t ions  t h e  p i t -  

f a l l s  of us ing  equat ion  (3) as a f u l l  d e s c r i p t i o n  of t h e  s y n e r g i s t i c  

r e a c t i o n .  I n  t h e  fo l lowing  d i s c u s s i o n  o f  thermodynamic v a l u e s ,  

w e  reduce t h i s  problem somewhat by only u s i n g  d a t a  f o r  e i t h e r  

benzene o r  t o l u e n e  systems as t h e  two s o l v e n t s  have s i m i l a r  proper- 

t i e s  (e.g. water  s o l u b i l i t y ,  d i e l e c t r i c  c o n s t a n t ,  e t c . ) .  I n  t h e  

second p a r t  of  t h i s  paper ,  s o l v e n t  and hydra t ion  e f f e c t s  are 

d iscussed .  

A) Calcium(I1) 

Calcium(I1) i s  found t o  e x h i b i t  a c o o r d i n a t i o n  number of 6 

i n  e s s e n t i a l l y  a l l  of  i t s  systems. Therefore ,  it would be  expected 

t o  be a c a t i o n  which would n o t  change i t s  coord ina t ion  number i n  

r e a c t i o n  (3 ) .  The thermodynamic v a l u e s  f o r  r e a c t i o n s  (1) and (3) 

are given i n  Table  1. From t h e  v a r i a t i o n  of  e x t r a c t i o n  w i t h  HTTA 

and TBP c o n c e n t r a t i o n s ,  t h e  s p e c i e s  e x t r a c t e d  were i d e n t i f i e d  as 

Ca(TTA)2(HTTA) i n  (l), and Ca(TTA)2(TBP)2 i n  (2) .  

r e a c t i o n  (3) i s  w r i t t e n  as: 

Accordingly, 

The en t ropy  v a l u e s  f o r  t h e  Ca(I1) systems (Table  I) seem un- 

expec ted ly  l a r g e  f o r  r e a c t i o n s  (1) and ( 3 ) .  I f  (1) were m e r e l y  

replacement of 6 H 0 ' s  by 3 TTA c h e l a t e  r i n g s ,  t h e  AS would be  

expected t o  be p o s i t i v e .  S i m i l a r l y  replacement of a c h e l a t e  r i n g  

of TTA i n  (3) by 2 TBP's should r e s u l t  i n  a n e g a t i v e  AS. The 

anamolous en t ropy  cannot be  r e l a t e d  t o  c h e l a t e  r i n g  formation 

and d i s r u p t i o n .  We f i n d  a reasonable  e x p l a n a t i o n  i f  w e  assume 

t h a t  t h e  e x t r a c t e d  s p e c i e s  i n  r e a c t i o n  (1) i s  t h e  ion p a i r  

[H(H20)n+][Ca(TTA)3-]. The e x t r a c t i o n  of  4 o r  5 waters of hy- 

d r a t i o n  would cause  t h e  crat ic  t e r m  of t h e  en t ropy  of r e a c t i o n  

(1) t o  be decreased.  Then, i n  r e a c t i o n  ( 4 ) ,  t h e  hydra t ion  waters 

would b e  r e l e a s e d  t o  produce t h e  e x t r a  p o s i t i v e  entropy. 

2 

Support f o r  t h i s  i n t e r p r e t a t i o n  of t h e  Ca( i1)-TTA e x t r a c t i o n  

system i s  obta ined  by comparison w i t h  t h e  d a t a  f o r  Ca( I I )  ex t rac-  

t i o n  by d ie thylehexylphosphor ic  a c i d  (5).  The d a t a  corresponded 
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SYNERGISTIC EFFECT 

TABLE I 

Thermodynamic DataS f o r  Ext rac t ion  
w i t h  HTTA + TBP 

1117 

M(TTA)n + mS = M(TTA)nSm 

Ref. - A G ~  -  AH^ - AS+ - Species  

Ca(TTA)2 (HTTA) +69.18 -18.4 -2 98 5 

C a  (TTA) (TBP) -39.13 -9.58 +162 5 

Zn ( TTA) +44.65 -45.6 + 3  8 

Zn(TTA)2 (TBP) -2 0.46 -28.2 - 26 8 

Eu (TTA) +41.47 +40.3 - 4  12 

EU(TTA) (TBP) -41.22 -60.0 - 62 11 

Eu(TTA) 3(TBP) -24.73 -24.0 + 3  11 

uo2 (TTA) + 1.26 0 -0.4 1 3  

U02 (TTA) (TBP) -11.59 -21.8 - 34 1 3  

Th(TTA)4 -12.85 +lo. 7 + 79 14 

Th (TTA) (TBP) -2 6.45 -43.7 - 58 1 4  

+These d a t a  are r e l a t e d  t o  equat ion (1) f o r  M(TTAIn s p e c i e s  and 

x kJ.rn-' 

t o  equat ion (3)  f o r  M(TTA) (TBP), s p e c i e s .  n 

+ J.m-+-l 

t o  e x t r a c t i o n  of HCa(HD ) however, t h e  entropy change w a s  

133 J.m-l-K-l , o r  only h a l f  of t h e  va lue  f o r  e x t r a c t i o n  of 

HCa(TTA)3. 

t h e  diethylhexylphosphate  dimers, whereas t h e  much more n e g a t i v e  

AS v a l u e  f o r  t h e  TTA system is  unders tandable  i f  t h e  proton i s  

hydrated r a t h e r  than a t t a c h e d  d i r e c t l y  t o  a bonded TTA molecule. 

2 3;  

T h i s  would i n d i c a t e  t h a t  t h e  proton is  a s s o c i a t e d  wi th  

W e  conclude t h a t  i n  Ca(I1) e x t r a c t i o n ,  synergism is  n o t  

a s s o c i a t e d  w i t h  an i n c r e a s e  i n  coord ina t ion  number but  i s  due t o  

a favorable  en t ropy  change, probably r e l a t e d  t o  a d i f f e r e n c e  i n  

t h e  hydra t ion  of  t h e  s imple t r i s - T T A  complex and t h e  TTA-TBP 

spec ies .  
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1118 CHOPPIN 

B) Zinc( I1)  

Zinc( I1)  can have c o o r d i n a t i o n  numbers of 4 ,  5 and 6. Swif t  

and Sayre (6 )  r e p o r t  Zn(H20)4+2 as t h e  normal hydra ted  s p e c i e s  

w h i l e  Graddon, e t  a l ,  ( 7 )  r e p o r t  t h e  formation i n  benzene of 

ZnL X (where L=B-diketonate c h e l a t o r  and X=monodentate adduct )  

r e s u l t i n g  i n  C.N.  = 5. Study of  Zn(1I)  e x t r a c t i o n  (8) by HTTA + 
TBP provided i n s i g h t  i n t o  t h e  change i n  AS a s s o c i a t e d  wi th  expan- 

s i o n  of t h e  c o o r d i n a t i o n  number of  z i n c  from 4 t o  5 .  

2 

The v a l u e s  obta ined  f o r  Zn(I1) f o r  r e a c t i o n s  (I) and ( 3 )  

are l i s t e d  i n  Table  I. A s  expected,  t h e  i n c r e a s e  of t h e  coor- 

d i n a t i o n  number from 4 t o  5 by a d d i t i o n  of TBP t o  Zn(TTA)2 i s  

accompanied by a n e g a t i v e  v a l u e  of AS. 

al though i t  i s  smaller than  might be expected.  Kassierer and 

Kertes (9a)  a l s o  r e p o r t  n e g a t i v e  AS v a l u e s  f o r  r e a c t i o n  (3)  when 

a n i t r o g e n  c o n t a i n i n g  L e w i s  base  i s  added t o  Zn(TTA) 

However, i n  a n o t h e r  s t u d y  (9b) they  concluded t h a t  t h e  s y n e r g i s t i c  

r e a c t i o n  involves  displacement  of two waters of h y d r a t i o n  from 

Zn(TTA) (H 0) b u t  d id  not  d i s c u s s  how t h i s  e x p l a i n s  t h e  n e g a t i v e  

AS. Our assumption of t h e  change of C.N.  from 4 t o  5 a s s o c i a t e d  

w i t h  t h e  n e g a t i v e  en t ropy  change seems more reasonable  as t h e i r  

r e a c t i o n  model would r e s u l t  i n  a p o s i t i v e  AS. 

Replacement of 4 H 0 ' s  
2 

i n  CHCL3. 2 

2 2 2  

C) Lanthanides  

T r i v a l e n t  l a n t h a n i d e  systems have been shown t o  e x h i b i t  

v a r i a b l e  c o o r d i n a t i o n  ranging  from C.N.  = 6 t o  C . N .  = 1 2  w i t h  8 

and 9 r a t h e r  common. K a s s i e r e r  and Kertes (10) r e p o r t e d  a AS 

v a l u e  f o r  t h e  s y n e r g i s t i c  r e a c t i o n  between Nd(TTA) and 2 ,2 ,  dipy- 

r idy lbenzene  i n  benzene s o l v e n t  o f  -34 J a m  . K  f o r  t h e  formation 

of  Nd(TTA)3S and of -100 J . m  K f o r  t h a t  of  Nd(TTA)3S2. They 

i n t e r p r e t  t h e s e  v a l u e s  as s u p p o r t i n g  a model of replacement  of 

water from t h e  hydra ted  B-diketonate  complex by t h e  f i r s t  

adduct b u t  n o t  by t h e  second. Data from Mathur, et a l ,  (11) i n  

Table  1 g i v e  a very  small en t ropy  change f o r  t h e  format ion  of 

Eu(TTA)~(TBP), which is c o n s i s t e n t  w i t h  a replacement  of 1 o r  2 

3 -1 -1 

-1. -1 
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SYNERGISTIC EFFECT 1119 

water molecules. 

accompanied by a l a r g e  n e g a t i v e  en t ropy  change. 

t h e  d a t a  of ref. 1 0  and suppor ts  a model i n  which Eu(TTA)~(TBP)~ 

i s  f u l l y  dehydrated and t h e  addi t ion  of t h e  second TBP proceeds 

v i a  expansion of t h e  coord ina t ion  sphere  from 7 t o  8. The l a r g e  

n e g a t i v e  i n c r e a s e  i n  en tha lpy  f o r  a d d i t i o n  of t h e  second TBP is 

c o n s i s t e n t  w i t h  t h i s  model. 

However, t h e  formation of Eu(TTA)~(TBP)~ i s  

T h i s  a g r e e s  w i t h  

Kandil and Farah (12) have obta ined  d a t a  on t h e  Eu-TTA-TOP0 

( t r i o c t y l p h o s p h i n e  oxide)  system in benzene. The formation of 

Eu(TTA) (TOPO) has  AH = -28.8 kT-m-' and AS = +29 J - m  

whi le  t h e  v a l u e s  f o r  Eu(TTA)~(TOPO)~ a r e  -40 kJ-m 

+95 J.m-l*K-l,  r e s p e c t i v e l y .  Mathur, e t  a l ,  r e p o r t e d  similar 

v a l u e s  except  f o r  t h e  AS of t h e  Eu(TTA)~(TOPO) f o r  which t h e y  

f i n d  +22 J ' m  . K  . 

-1 -1 - K  
-1 3 

and 

-1 -1 

TOPO has  a h igher  equi l ibr ium cons tan t  f o r  formation of 

TOPO'H20. 

i n  r e a c t i o n  3, adding a p o s i t i v e  c o n t r i b u t i o n  t o  AS. Based on 

comparison w i t h  t h e  d a t a  of TBP system, release of t h e  e x t r a  

H 0 i n  t h e  TOPO r e a c t i o n  would s e e m  t o  be r e l a t e d  t o  an e x t r a  

p o s i t i v e  AS c o n t r i b u t i o n  of 25-30 J ' m  ' K  . It is  more d i f f i -  

c u l t  t o  e v a l u a t e  t h e  s i g n i f i c a n c e  of t h e  AS va lue  f o r  formation 

of Eu(TTA)~(TOPO)~. 

and a l s o  c a t a l y z e s  t h e  HTTA keto-enol equi l ibr ium.  

Therefore ,  t h e  adduct releases a water molecule 

-1 -1 2 

TOPO reacts w i t h  HTTA more than does TBP 

In conclusion,  i t  would seem t h a t  t h e  e x t r a c t e d  B-diketonate 

s p e c i e s  i s  Ln(TTA) (H 0) where n = 1 o r  2. The f i r s t  TBP 

r e p l a c e s  t h e  n H 0 molecules and t h e  second expands t h e  coordi-  

n a t i o n  sphere. I n  b o t h  adduct formation s t e p s ,  i t  i s  t h e  n e g a t i v e  

en tha lpy  which causes  synergism since t h e  entropy i s  n e u t r a l  o r  

opposes t h e  s y n e r g i s t i c  reac t ion .  This  en tha lpy  must r e f l e c t  t h e  

s t r e n g t h  of t h e  Ln-TBP a t t r a c t i o n .  

3 2 n  

2 

+2 
D) Uranyl ,UO, 

The v a l u e s  f o r  formation of U02(TTA)2(TBP) are l i s t e d  i n  

Table 1. The negat ive  entropy and en tha lpy  v a l u e s  would imply 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



CHOPPIN 1120 

no replacement of  H 0 molecules  and sugges t  a model whereby t h e  

mechanism of t h e  s y n e r g i s t i c  r e a c t i o n  would i n v o l v e  expansion 

of t h e  c o o r d i n a t i o n  sphere  of uranium. 

v a l u e s  a r e  not  as n e g a t i v e ,  which a g a i n  r e f l e c t  t h e  e f f e c t  of  

dehydra t ion  of TOP0 upon adduct formation.  

2 

The U02(TTA)2(TOPO) 

E) Thorium( Iv)  

The t e t r a v a l e n t  a c t i n i d e s ,  Th(IV), U(1V) and Pu(IV) have 

been shown t o  form A~I(TTA)~(TBP). 

t h e  temperature  dependence of  t h e  e x t r a c t i o n  of Th(IV) w i t h  

t h e  r e s u l t s  shown i n  Table  1. The l a r g e  p o s i t i v e  v a l u e s  o f  AS 

and t h e  p o s i t i v e  AH f o r  t h e  format ion  of Th(TTA)4 are c o n s i s t e n t  

w i t h  e x t e n s i v e  c a t i o n  dehydra t ion .  The n e g a t i v e  v a l u e s  a s s o c i a -  

t e d  w i t h  Th(TTA)4(TBP) formation i n d i c a t e  s imple  a d d i t i o n  o f  

adduct whereby t h e  c o o r d i n a t i o n  number of  Th(IV) i n c r e a s e s  

from 8 t o  9. E x t r a c t i o n  and spec t rophotometr ic  s t u d i e s  of 

Pu(1V) (15) and U(1V) (16) i n  TTA + TBP systems have been 

i n t e r p r e t e d  a l s o  as  suppor t  f o r  a model o f  expansion of t h e  

C.N.  from 8 i n  M(TTA)4 t o  9 i n  M(TTA)4(TBP). 

P a t i l ,  et a l ,  (14) measured 

11. THERMODYNAMIC SUMMARY 

The u n c e r t a i n t i e s  of HTTA-TBP, TBP-H 0 and HTTA(keto)= 
2 

HTTA(eno1) i n t e r a c t i o n s  make t h e  preceeding  i n t e r p r e t a t i o n  of 

measured en tha lpy  and e n t r o p y  changes somewhat u n c e r t a i n .  How- 

e v e r ,  much of t h i s  u n c e r t a i n t y  can be e l i m i n a t e d  by c o n s i d e r i n g  

t h e  change f o r  r e a c t i o n s  such a s :  

M(TTA)n(S) + N(TTA)m = M(TTA)n + N(TTAIm(S) ( 4 )  

We choose UO (TTA) -TBP as t h e  r e f e r e n c e  and l e t  N(TTA) b e  

Zn(TTA)2, Eu(TTA) and Th(TTA) s u c c e s s i v e l y .  The r e s u l t s  are 

l i s t e d  i n  Table  2 as  w e l l  as d a t a  f o r  t h e  r e a c t i o n .  

2 2 m 

3 4 

UO (TTA)*(TBP) + Eu(TTA)~(TBP) = U02(TTA)2 + Eu(TTA)~(TBP)~ 

I f  t h e  prev ious  i n t e r p r e t a t i o n s  a r e  v a l i d ,  b o t h  Zn(TTA)2 

are anhydrous and a d d i t i o n  of  TBP r e p r e s e n t s  an 

(5) 2 

and U02(TTA) 
2 
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TABLE 2 

1121  

Thermodynamic Values of t h e  Reaction: 

U02 (TTA>2 (TBP) + N(TTA>m = U02 (TTA)2 + N(TTA)m(TBP) 

- A G ~  ils+ 
Zn (TTA) -8.9 -6.4 + 8  

Eu(TTA) -13.1 -2.2 +37 

Th(TTA)4 -14.9 -21.9 -24 

Eu(TTA) ,(TBP) -4.9 -14.2 -31 

+2 
i n c r e a s e  i n  C.N. o f  4 t o  5 f o r  both Zn+2 and U02 

and en tha lpy  changes are small, c o n s i s t e n t  w i t h  no dehydrat ion 

and t h e  increase in t h e  coord ina t ion  sphere  of Zn(I1) i s  

negated by t h e  decrease  of t h a t  of UO . Conversely, t h e  

r e a c t i o n  w i t h  Eu(TTA) 

expected i f  H 2 0  molecules are re leased .  

Eu(TTA)~(TBP), AS i s  n e g a t i v e ;  no H 2 0 ' s  are r e l e a s e d  and t h e  

C.N.  of Eu(II1)  i n c r e a s e s  from 7 t o  8 whi le  t h a t  of UO 

decreases  from 5 t o  4 .  

i t ' s  C.N. i n c r e a s e s  from 8 t o  9 whi le ,  aga in ,  t h a t  of U02  

decreases  from 5 t o  4.  

. The en t ropy  

+2 

has a l a r g e ,  p o s i t i v e  entropy,  which is  
3 

In t h e  r e a c t i o n  w i t h  

+2 
2 

Th(TTA)4 reacts w i t h  a n e g a t i v e  en t ropy;  

11. HTTA+BENZOIC A C I D  SYSTEMS 

Many a u t h o r s  have d iscussed  t h e  r o l e  of t h e  so lvent  i n  

s y n e r g i s t i c  e x t r a c t i o n s .  Akiba (17) has  c o r r e l a t e d  t h e  v a l u e s  

of 8, of Eu(II1)  and U02+' w i t h  TTA+TBP and TTA+TBPO ( t r i b u t y l -  

phosphine oxide)  i n  a number of s o l v e n t s  w i t h  t h e  a c t i v i t y  co- 

e f f i c i e n t s  i n  t h e  organic  phase as eva lua ted  by r e g u l a r  s o l u t i o n  
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TABLE 3 

CHOPPIN 

Formation C s n s t a n t s  f o r  t h e  S y n e r g i s t i c  
Reac t ions  w i t h  Eu(TTA)~ 

Solvent  

CC14 

'gH6 
CHC13 

Benzoic Acid ( 1 7 )  TBP (18) 

l o g  8, l o g  0, l o g  B, l o g  0, 
~~ ~- 

4.42 8.24 5.05 8.40 

2.94 5.28 4. 70 8.00 

- 5.46 3.40 5.20 

theory.  No c o r r e l a t i o n  i s  found f o r  Akiba 's  d a t a  between l o g  0 
and t h e  s o l v e n t  d i e l e c t r i c  c o n s t a n t  but  t h e r e  i s  a l i n e a r  rela- 

t i o n  ( s l o p e s - 1 )  between l o g  B and t h e  water s o l u b i l i t y  i n  

each so lvent .  A c t i v i t y  c o e f f i c i e n t s  u n f o r t u n a t e l y  provide  

l i t t l e  i n s i g h t  i n t o  t h e  p h y s i c a l  and chemical e f f e c t s  involved.  

n 

n 

The e f f e c t  of hydra t ion  i n  t h e  o r g a n i c  s o l v e n t  i s  shown 

in t h e  system E u ( I I 1 )  + Benzoic a c i d  + HTTA. Europium forms 

benzoate  complexes i n  t h e  aqueous phase b u t  no e x t r a c t i o n  of  

E u ( B ~ ~ ) ~  is  observable .  

t i o n  i s  observed which can be shown t o  be i d e n t i f i e d  w i t h  t h e  

s p e c i e s  Eu(TTA)~(HB) The v a l u e s  f o r  

t h e  s y n e r g i s t i c  r e a c t i o n  c o n s t a n t s  are compared w i t h  t h o s e  f o r  

Eu(TTA)~(TBP)~ (17)  i n  Table  3. 

When HTTA i s  p r e s e n t ,  s y n e r g i c  e x t r a c -  

where n = 1 and 2 (18) .  n 

We have analyzed t h e  d a t a  f o r  e x t r a c t i o n  of benzoic  a c i d  

i n t o  s e v e r a l  o r g a n i c  a o l v e n t s  (19) .  The s p e c i e s  which provided 

a s a t i s f a c t o r y  a n a l y s i s  of t h e  benzoic  a c i d  e x t r a c t i o n  and t h e  

a s s o c i a t e d  i n c r e a s e  of water s o l u b i l i t y  i n  t h e  o r g a n i c  phase 

were: H B e n ;  H B e n ' H  0;  HBen.(H20)2; ( H B ~ I I ) ~ ;  (HBen) . H  0. 

dependence of  t h e  e x t r a c t i o n  c o e f f i c i e n t  D of  t h e  t o t a l  benzoic  

a c i d  i n  t h e  o r g a n i c  phase t o  t h a t  i n  t h e  aqueous phase i s  shown 

i n  F igure  I. A s  t h e  d ie lec t r ic  c o n s t a n t  of  t h e  solvent i n c r e a s e s  

t h e  s o l u b i l i t y  of t h e  benzoic  a c i d  a l s o  i n c r e a s e s .  F igure  2 

The 2 2 2  
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D 

Figure 1. Dependence of t he  ex t rac t ion  coefficiGrtt D f o r  benzoic 
ac id  i n  d i f f e r e n t  so lvents  on the  aqueous phase con- 
cent ra t ion  of t h e  benzoic ac id .  

shows the  v a r i a t i o n  i n  the  concentrations,  C ,  i n  benzene of 

and HBen spec ies  a s  t h e  HBen (0) ’ HBen-H20(o), HBen(H20)2(o) 
2 ( 0 )  

t h e  benzoic ac id  concentration i n  t h e  aqueous phase increases. 

A t  lower concent ra t ions ,  t he  predominant organic phase spec ies  

i n  benzene i s  the  unhydrated monomer. However, fo r  (HBen) 
( 4  

M, t h e  dimer is  t h e  predominant form. 

unhydrated monomer va r i e s  i n  d i f f e r e n t  so lvents ;  

0.26 i n  CCL 0.46 i n  C H and 0.55 i n  CHC13. This i s  i n  t h e  

opposite d i r ec t ion  from t h e  t rend  i n  log  

A reasonable conclusion i s  t h a t  so lva t ion  of the  benzoic ac id  

The mole f r ac t ion  of 

0.14 i n  C6H12, 

4’ 6 6  
va lues  i n  Table 3. 

n 
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log c 

I I I 1 1 I I 
-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 

log (H Ben),q 

Figure  2 .  V a r i a t i o n  of  t h e  c o n c e n t r a t i o n s ,  C ,  i n  moles benzoic  
a c i d  p e r  l i t e r  s o l u t i o n ,  i n  benzene as a f u n c t i o n  
of  t h e  c o n c e n t r a t i o n  of u n d i s s o c i a t e d  benzoic  a c i d  
i n  t h e  aqueous phase. 

i s  much s t r o n g e r  i n  benzene and i n  chloroform t h a n  it is  i n  

carbon t e t r a c h l o r i d e  and t h i s  s o l v a t i o n  competes more s t r o n g l y  

w i t h  t h e  s y n e r g i s t i c  r e a c t i o n  i n  C H 6 6  
By comparison, s o l v a t i o n  of TBP i s  not  s i g n i f i c a n t  i n  CCL 

i n  C H b u t  seems t o  p l a y  a r o l e  i n  CHCL 

and CHC13 t h a n  i n  CCL4. 

4 Or 

3' 6 6  

I V .  SOLVENT EFFECT SUMMARY 

The r o l e  of  t h e  adduct  i n  i n c r e a s i n g  t h e  hydrophobic 

n a t u r e  of  t h e  e x t r a c t e d  complex had been s t r e s s e d  by many 

a u t h o r s .  This  would e x p l a i n  t h e  g r e a t e r  s y n e r g i s t i c  e f f e c t  
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wi th  more hydrophobic s o l v e n t s .  Akiba has  a t tempted a more 

d e t a i l e d  explana t ion  of t h e  r o l e  of t h e  s o l v e n t  by r e l a t i n g  

it t o  a c t i v i t y  c o e f f i c i e n t s .  Our s t u d i e s  wi th  benzoic  a c i d  

i n d i c a t e  t h a t  t h e  s o l v a t i o n  of t h e  adduct by t h e  s o l v e n t  can 

p lay  a s i g n i f i c a n t  r o l e  i n  t h e  s o l v e n t  e f f e c t  i n  synergism. 

S t u d i e s  of  s o l v e n t  - adduct i n t e r a c t i o n  f o r  TBP, TOPO, e tc .  

would c l a r i f y  t h e  g e n e r a l i t y  of t h i s  observa t ion .  

F i n a l l y  t h e  r o l e  of w a t e r  d i sso lved  i n  t h e  organic  

s o l v e n t  i n  t h e  s y n e r g i s t i c  r e a c t i o n  sugges ts  t h a t  c a l o r i m e t r i c  

mearsurments of anydrous systems may not  provide proper  d a t a  

t o  assess t h e  mechanisms of r e a c t i o n  in  w e t  e x t r a c t i o n s .  

The r e s e a r c h  a t  F l o r i d a  S t a t e  Univer i s ty  h a s  been supported 

by a c o n t r a c t  w i t h  t h e  U.S.D.O.E. 
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